skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seppäläinen, Timo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 7, 2026
  2. Abstract This paper studies the large scale limits of multi-type invariant distributions and Busemann functions of planar stochastic growth models in the Kardar–Parisi–Zhang (KPZ) class. We identify a set of sufficient hypotheses for convergence of multi-type invariant measures of last-passage percolation (LPP) models to the stationary horizon (SH), which is the unique multi-type stationary measure of the KPZ fixed point. Our limit theorem utilizes conditions that are expected to hold broadly in the KPZ class, including convergence of the scaled last-passage process to the directed landscape. We verify these conditions for the six exactly solvable models whose scaled bulk versions converge to the directed landscape, as shown by Dauvergne and Virág. We also present a second, more general, convergence theorem with future applications to polymer models and particle systems. Our paper is the first to show convergence to the SH without relying on information about the structure of the multi-type invariant measures of the prelimit models. These results are consistent with the conjecture that the SH is the universal scaling limit of multi-type invariant measures in the KPZ class. 
    more » « less
  3. Abstract We show that two semi‐infinite positive temperature polymers coalesce on the scale predicted by KPZ (Kardar–Parisi–Zhang) universality. The two polymer paths have the same asymptotic direction and evolve in the same environment, independently until coalescence. If they start at distance apart, their coalescence occurs on the scale . It follows that the total variation distance of two semi‐infinite polymer measures decays on this same scale. Our results are upper and lower bounds on probabilities and expectations that match, up to constant factors and occasional logarithmic corrections. Our proofs are done in the context of the solvable inverse‐gamma polymer model, but without appeal to integrable probability. With minor modifications, our proofs give also bounds on transversal fluctuations of the polymer path. As the free energy of a directed polymer is a discretization of a stochastically forced viscous Hamilton–Jacobi equation, our results suggest that the hyperbolicity phenomenon of such equations obeys the KPZ exponent. 
    more » « less
  4. We study first-passage percolation through related optimization problems over paths of restricted length. The path length variable is in duality with a shift of the weights. This puts into a convex duality framework old observations about the convergence of the normalized Euclidean length of geodesics due to Hammersley and Welsh, Smythe and Wierman, and Kesten, and leads to new results about geodesic length and the regularity of the shape function as a function of the weight shift. For points far enough away from the origin, the ratio of the geodesic length and the ℓ<#comment/> 1 \ell ^1 distance to the endpoint is uniformly bounded away from one. The shape function is a strictly concave function of the weight shift. Atoms of the weight distribution generate singularities, that is, points of nondifferentiability, in this function. We generalize to all distributions, directions and dimensions an old singularity result of Steele and Zhang for the planar Bernoulli case. When the weight distribution has two or more atoms, a dense set of shifts produces singularities. The results come from a combination of the convex duality, the shape theorems of the different first-passage optimization problems, and modification arguments. 
    more » « less